THE LEAST SQUARES COMPUTER ESTIMATION OF DISSOCIATION CONSTANTS OF SNAZOXS AND NAPHTHYLAZOXINE 6S FROM SPECTROPHOTOMETRIC DATA*

M.MELOUN and J.PANCL

Department of Analytical Chemistry, Institute of Chemical Technology, 532 10 Pardubice

Received July 30th, 1975

The dissociation constants of two metallochromic indicators, 7-(4-sulpho-1-naphthylazo)-8-hydroxyquinoline-5-sulphonic acid (SNAZOXS) and 7-(6-sulpho-2-naphthylazo)-8-hydroxyquinoline-5-sulphonic acid (Naphthylazoxine 6S), were determined spectrophotometrically in a medium of 0-IM-NaCl or NaClO₄ at 25°C. The absorbance vs pH curves were treated by graphical linearization and by numerical non-linear regression using the JDC-LETAG computer program. The molar absorption coefficient vs wavelength curves were computed for all five variously protonized forms of the two metallochromic indicators, employing Kankare's program FA 608 + + EY 608.

The large group of 7-arylazoderivatives of 8-hydroxyquinoline-5-sulphonic acid represent excellent metallochromic indicators employed in chelometric titrations of many metal cations^{1,2}. The formation of coloured chelates is accompanied by a substantial change in the colouration ($\Delta \lambda =$ $= \lambda_{\max}^{ML} - \lambda_{\max}^{L}$), typical of N-heterocyclic azocompounds substituted in the *p*-position with respect to the phenolic hydroxyl. In the first papers in this series, two azoxines differing only in the steric arrangement of the molecule will be discussed; SNAZOXS, i.e. 7-(4-Sulpho-I-naphthylazo)-8-hydroxyquinoline-5-sulphonic acid, and Naphthylazoxine 6S, i.e. 7-(6-Sulpho-2-naphthylazo)-8-hydroxyquinoline-5-sulphonic acid were first synthesized by Guerrin, Sheldon and Reilley³, who also utilized SNAZOXS for the complexometric determination of ten metal cations by EDTA titration. Twenty five metal cations were titrated by Fritz, Abbink and Payne⁴ using Naphthylazoxine 6 S. Busev and coworkers carried out a study of the chelometric determinations of indium^{2,5} and gallium⁶ using the two indicators. Goyal and Tandon determined the composition of complex V(IV): SNAZOXS, 1:2, spectrophotometrically⁷ and the stability constants of the SNAZOXS complexes with Cr(VI), Mo(VI) and W(VI) potentiometrically⁸. Tsumeo Shimizu⁹ employed Naphthylazoxine 6S as an indicator for the spectrophotometric determination of scandium. Püschel and coworkers have developed a microdetermination method for arsenates and arsenic in organic substances^{11,12}, employing titration with a lead(II) salt and SNAZOXS indicator. Vytřas and coworkers^{13,14} studied colour changes in direct chelometric titrations of Zn with SNAZOXS and Naphthylazoxine 6S using the C.I.E. colour system. Meloun and Čermák¹⁵ evaluated the chelometric titrations of lead and zinc with SNAZOXS and

The first part in the series: Complexation Equilibria of Some Azo Derivatives of 8-Hydroxyquinoline-5-sulphonic Acid.

Naphthylazoxine 6S indicators by non-linear regression employing a computer $\operatorname{program}^{17}$. Meites¹⁶ gives the dissociation constants for SNAZOXS as pK_1 7.0 and pK_2 3.0 at I 0.1 and 25°C and for Naphthylazoxine 6S as pK_1 7.4 and pK_2 3.1 at I 0.1 and 25°C.

In this paper, the protonation equilibrium of SNAZOXS and Naphthylazoxine 6S are studied spectrophotometrically. The results of graphical linearization of the pH-absorbance curves measured by two different techniques are compared with the results of numerical non-linear regression of these curves employing the JDC-LETAG program^{18,19}. The values of the molar absorption coefficients for all the protonated forms of the two azoxines as a function of the wavelength were determined using Kanakare's FA 608 + EY 608 program²⁰.

EXPERIMENTAL

Chemicals and Solutions

SNAZOXS, p.a., and Naphthylazoxine 6S, commercial products from Spolana, Neratovice, contain coloured impurities interfering in the spectrophotometric measurements. The two indicators were purified by precipitation from a concentrated solution with acetone¹⁷. In the first portion of the precipitate, coloured impurities were detected chromatographically and, in the remainder of the precipitate, the content of the pure indicator was found. The indicator purity was controlled by chromatography on Whatman No 2 paper impregnated with EDTA, in a descending arrangement using a water-pyridine-ethyl acetate (1:2:4) system. The purified indicator was washed with acctone and dried at 60° C. The content of pure indicator was determined by elemental analysis for azo-nitrogen, corresponding to 85.6% for SNAZOXS and 92.9% for Naphthylazoxine 6S. Sodium hydroxide (1m) was prepared by dilution of 50% NaOH prepared according to Sörensen²¹. The titre was determined by potentiometric titration of oxalic acid under an inert argon atmosphere. The solution was stored in a polyethylene bottle fitted with an ascarite tube. Perchloric acid (1M) was obtained by dilution of 70% HClO₄ (p.a., Merck) with redistilled water. The titre was determined by potentiometric titration of HgO in KI medium²². Sodium perchlorate (1M) was prepared by neutralization of recrystallized sodium hydrocarbonate (p.a. Lachema) with concentrated perchloric acid (70% p.a., Merck) and was recrystallized twice from redistilled water^{10,23}. A phosphate buffer (0.001425M-Na₃PO₄ + 0.09145M-NaClO₄) was prepared by weighing doubly recrystallized sodium phosphate and the ionic strength was adjusted to I 0.1 with sodium perchlorate or chloride. Standard buffers with declared pH (S) values were prepared according to Bates²⁴ from chemicals purified by repeated recrystallization from redistilled water freed of carbon dioxide. Sodium chloride (1M) was prepared by dissolving 58.44 g of the substance (p.a. Lachema) in redistilled water and diluting to 1000 ml. Distilled water: water was purified on a central ion-exchange apparatus and then distilled in a ground-glass apparatus. The water quality was controlled by conductivity measurement.

The prepared solutions were freed of traces of heavy metals by extraction into a dithizone solution in tetrachloromethane.

Measurement of pH-Absorbance Curves

Spectral curves were orientatively measured at various pH values on a Specord recording spectrophotometer (Zeiss, Jena) with a TAD titration adapter (ref.²⁵), employing procedure (A). The spectra for quantitative evaluation were obtained by procedure (B) on a compensation single-beam

spectrophotometer, VSU-2-G (Zeiss, Jena), provided with an external titration apparatus connected with the measuring cuvette. A vs pH curves at constant wavelength were obtained by pH-photometric titration (procedure (A)) on a single-beam Spekol spectrophotometer with an amplifier (Zeiss, Jena), using a TAL adapter (ref.^{17,26-28}).

Method A: pH-photometric titration performed directly in the cuvette. The A vs pH curves in a pH range of 2–12 are carried out advantageously by combined pH-photometric microtitration with a TAL or TAD adaptor on a Spekol spectrophotometer with an amplifier or on a Specord instrument; for details see refs^{17,19}. In the solution titrated in the cuvette (type C, Zeiss, Jena), with a volume of 22 ml and a length of 50 mm, are immersed the microburette orifice, a glass electrode and a reference electrode, a thermometer and a stirrer. The solution is stirred with a Teflon stirrer driven by a small electromotor. Capillaries for introducing argon into the solution and above it are also placed in the cuvette. The pH value is adjusted by addition of several microlitres of 1M-HClO₄ to the solution of an alkali salt of a weak acid containing the studied coloured substance; the absorbance value is measured simultaneously.

Method B: pH-photometric titration performed outside the cuvette. pH-photometric titrations can be carried out in the titration apparatus according to $Havel^{29,30}$. In a titration vessel with a total volume of c. 120 ml are immersed the tip of the microburette, one branch of the Wilhelm bridge³¹, a thermometer, a stirrer and an argon inlet. The vessel was connected with the measuring cuvette by a thin polyethylene tube through the Teflon stopper of the cuvette. Another tube connected the bottom of the cuvette with a 100 ml polyethylene syringe. When the solution was drawn into the cuvette, it flowed from the vessel through the polyethylene tube into the cuvette and from the cuvette into the polyethylene tube connected to the syringe. Care was exercised to prevent the solution from flowing into the syringe. When expelling the solution from the cuvette and the connecting polyethylene tubes were rinsed several times with the measured solution. 10-01 and 50-01 mm long replaceable cuvettes were employed. The pH of 50 ml of the measured solution was varied by microlitre additions of 1M-HClO₄ using a home-made microburette²⁶.

After equilibration in the titration vessel, the pH was measured and the solution was transferred using the syringe into the cuvette. The cuvette was first rinsed several times with the solution from the titration vessel and then the solution absorbance was measured. The solution was then returned into the titration vessel and the pH was again measured. The whole procedure was repeated after another addition of perchloric acid.

pH-Measurement

In method (A) the pH was measured using pH-meters PHM-4d (Radiometer, Copenhagen) and OP 205 (Radelkis, Budapest) with a G202B glass electrode (Radiometer, Copenhagen) and a silver chloride electrode³² with 1M-NaCl, separated from the measured solution by a frit. All measurements were carried out at a temperature of $(25 \pm 0.1)^{\circ}$ C maintained by a V3 water thermostat (Prüfgeräte-Werk, Medingen). The values of the pH obtained were corrected to the Nernstian slope value, 57.82 mV/pH, determined using five standard buffers, and for the varying values of the liquid-junction potential between the standard buffer and the measured solution employing the relationship

$$pa_{H^+} = \left[pH(X) - pH(S) \right] \frac{59 \cdot 16}{57 \cdot 82} + pH(S) + \frac{1}{59 \cdot 16} \left[E_j(S) - E_j(X) \right], \qquad (1)$$

where pH(S) is the pa_H value for the standard buffer which was used for the pH-meter calibration

and $E_j(S)$ is the liquid-junction potential developed in the standard buffer, pH(X) is the pa_H value determined and $E_j(X)$ is the liquid-junction potential value in the measured solution, whose ionic strength is chiefly affected by the NaCl content. The $E_j(X)$ values for various ionic strengths were measured in a concentration cell consisting of two silver chloride electrodes. The correction of the pH using Eq. (1) is significant when the pH is measured in solutions whose ionic strength differs considerably from that of the standard buffer. If the ionic strengths of the standard buffer and the measured solution are very similar, then difference $E_j(S) - E_j(X)$ is negligible.

In method (B) the pH was measured with an OP 204/1 pH-meter and an OP 7171-1/A glass electrode (Radelkis) and a silver chloride electrode³² separated by the Wilhelm bridge³¹ from the measured solution. The measurements were carried out at $(25 \pm 0.1)^{\circ}$ C, maintained by the same thermostat as in method (A). The pH-values determined were corrected only for the Nernstian slope of the glass electrode using Eq. (1), assuming that $E_i(X) \approx E_i(S)$.

METHODS OF EVALUATION OF EXPERIMENTAL DATA

Graphical Handling of the A vs pH Curves

The principles of the graphical method employed in this paper can be found elsewhere^{30,33,34}. Only the final equations, obtained by transformation of the equilibrium constant equations, mass balances and the equations for the overall solution absorbance (assuming the validity of the Lambert-Beer law), will be given here. For equilibrium (A)

$$LH_i \rightleftharpoons LH_{i-a}^{-q} + qH^+$$
 (A)

$$c_{\rm L}A^{-1} = \varepsilon_1^{-1} - (c_{\rm L}\varepsilon_2 - A) a_{\rm H^+}^{-q}A^{-1}\varepsilon^{-1}K_{\rm ai} = \varepsilon_1^{-1} - Q_1 a_{\rm H^+}^{-q}, \qquad (2)$$

$$c_{\rm L}A^{-1} = \varepsilon_2^{-1} - (A - c_{\rm L}\varepsilon_1) a_{\rm H^+}^{\rm q} A^{-1} \varepsilon_2^{-1} K_{\rm ai}^{-1} = \varepsilon_2^{-1} + Q_2 a_{\rm H^+}^{\rm q} , \qquad (3)$$

where A is the absorbance, $c_{\rm L}$ is the total substance concentration, ε_1 and ε_2 are the molar absorption coefficients, $K_{\rm ai}$ is the mixed equilibrium constant of reaction (A) and the other symbols have their usual significance. The value of q is obtained from the plot, $c_{\rm L}/A = f(Q_1[{\rm H}^+]^{-q} \text{ or } Q_2[{\rm H}^+]^q)$. The values of the molar absorption coefficients and the equilibrium constant are obtained from the intercept (ε_1 and ε_2) and from the slope ($K_{\rm ai}$).

Non-Linear Regression of the A vs pH Curves

Using non-linear regression of the A vs pH curves, the molar absorption coefficients and protonation constants for all light-absorbing species in the protonation equilibrium can be obtained. If a polybasic acid, LH_J, yields a mixture of variously protonated species LH_j (where j = 0, ..., J) and the charges are omitted for the sake of simplicity), the overall mixed protonation constant of species LH_i, β_{01i} , or its mixed dissociation constant, K_{ai} , will be given by

$$\beta_{01j} = \frac{\left[LH_j \right]}{\left[L \right] a_{H^+}^j} = 1 / \prod_{i=J+1-j}^J K_{ai} .$$
(4)

Assuming that all variously protonated species LH_j absorb radiation at the given wavelength, absorbance A of the solution for a unit cuvette length will equal

$$A = c_{\rm L} \left(\varepsilon_{\rm L} + \sum_{j=1}^{\rm J} \varepsilon_{{\rm LH}_j} \cdot 10^{j, \log a_{\rm H}^+ + \log \beta_{\rm Olj}} \right) / \left(1 + \sum_{j=1}^{\rm J} 10^{j.\log a_{\rm H}^+ + \log \beta_{\rm Olj}} \right).$$
(5)

In order to numerically evaluate the A vs pH curve described by equation (5), i.e. by the functional relationship, $A = f(\log \beta_{01j}, \varepsilon_L, \varepsilon_{LH}; pH)$ (where j = 1, ..., J), the least squares method can be employed and the unknown parameters adjusted so that the function

$$U = \sum_{i} w_{i} (A_{calc,i} - A_{exp,i})^{2}, \qquad (6)$$

where w_i is the statistical weight, usually equal to unity, attains a minimum value. The procedure is given in the JDC-LETAG program (refs^{17,18,19}). The zeroth approximation is assessed from the A vs pH plot. The fit of the calculated regression A vs pH curve to the experimental points, *i.e.* as small a value of residuals ($A_{exp} - A_{calc}$) as possible and as frequent a change in their sign as possible, is a criterion of the reliability of the determined parameters.

Matrix Analysis of the A vs pH Dependence

The experimental and computation scheme of the determination of the protonation constants of a multicomponent system, employing Kankare's²⁰ FA 608 and EY 608 programs, can be summarized in the following points: a) The residual error in the absorbance, s_k , is evaluated using Wernimont's procedure 35 . b) Wavelengths at which changes in the spectra are as large as possible are selected. c) The spectra are measured on solutions prepared so that the concentration of the basic component (H^+) is varied in the widest possible interval. d) Using the second moment absorbance matrix, the number of light-absorbing species in the system is determined from the rank of the matrix and the spectra are refined by removal of breakdown points. e) Equilibrium stoichiometry of coloured complex species is assumed and the equilibrium constants of the assumed reactions are determined by minimization of function U. After location of the minimum of function U, the curves of the molar absorption coefficient vs the wavelength are computed for all coloured species present in the solution and finally their equilibrium concentrations are calculated. f) The closest possible fit of the computed spectra to the experimental points is a measure of the reliability of the computed protonation constants, molar absorption coefficients and the selected equilibrium stoichiometry of the complex species. This fit is evaluated by comparing the standard deviation of the absorbance, $\sigma(A)$, calculated from the value of function U at the minimum, with the absorbance residual error, s_k .

RESULTS AND DISCUSSION

Five optically active species, H_4L^+ , H_3L , H_2L^- , HL^{2-} and L^{3-} , are present at equilibrium in aqueous solutions of azoxines S, in dependence on the pH (Fig. 1-4). The first two, deep red-purple species, H_4L^+ and H_3L , predominate in strongly acidic media and exhibit absorption maxima at 548 and 550 nm for SNAZOXS and at 529 and 543 nm for Naphthylazoxine 6S (Table I). Two poorly pronounced isobestic points appear on the absorption curves of Naphthylazoxine 6S: one corresponds to deprotonation of the H_4L^+ form and the other to deprotonation of the

TABLE I

Survey of Optical Data for Variously Protonated Forms of SNAZOXS and Naphthylazoxine 6S

Form	Medium	pH Region (or log C _{HClO4})	λ _{max} nm	e _{max}	λ _{isosb} . nm	€ _{isosb} ,
		SNA	zoxs			
H_4L^+	HClO ₄	(>1·3м)	550	24 900	475	7 690
H ₃ L	HClO ₄	(0-1-1-0м)	548	17 620	473	7 680
H ₂ L ⁻)		1-2	534	11 420	> 475	6 370
-					$> \begin{cases} 430 \\ 540 \end{cases}$	7 200
HL ⁻²	1 0·1 NaClO ₄	4-6	513	15 020	/ (548	11 350
1					$> \begin{cases} 421 \\ 527 \end{cases}$	7 400
L^{-3}		>8	500	16 950	(521	14 170
		Naphthyl	azoxine 6S			
H_4L^+	HClO ₄	(>1·0м)	529	30 300	<.	
		<i></i>	543		> 466	8 400
H ₃ L	HClO ₄	(0-1-0-7м)	530 550	24 370		
			550	24 400	459	7 950
H_2L^-)	1-2	516	16 600		
					> 415	9 380
HL ⁻ ²	$\begin{bmatrix} I & 0 \cdot 1 \\ N_{\rm P} C & 0 \end{bmatrix}$	4-6	500	20 280	115	0.500
	NaCiO ₄				2 1413	9 500
L ⁻³	J	>8	492	22 750	(5-0	10 2.0

Collection Czechoslov. Chem. Commun. [Vol. 41] [1976]

TABLE II

Survey of Evaluated Sets of Spectra and pH-Absorbance Curves for SNAZOXS and Naphthylazoxine 6S

Set	Medium	λ, nm	c _L , mol∕l	<i>d</i> , mm	No of points	pH range	Exper. tech- nique
			SNAZOXS				
1	I 0·1 (Na ₃ PO ₄ , NaClO ₄ , HClO ₄ , K III)	400—640	8.00 . 10 ⁻⁵	10.01	24	1.84-10.58	В
2		470			45	1.51-11.27	A
2		470				1.51 11.27 1.55 - 11.22	A
4	L 0·1	470			41	1.52 - 11.15	A
5	(Na ₂ PO ₄ ,	470	$8.60.10^{-6}$	50.01	45	1.48 - 11.27	A
6	NaCl.	470			54	1.49-11.21	Α
7	HClO₄,	450			46	1.52-11.21	А
8	K III)	560			43	1.4811.16	А
9		580			37	1.47 - 11.20	Α
10	HClO ₄	400-640	$2.00 \cdot 10^{-5}$	50.00	13	-1.00 to $+0.95$	В
	7		Naphthylazoxine	6S			
1	$I \ 0.1$ $(Na_3PO_4, NaClO_4, NaClO_4, HClO_4, K III)$	400-640	4·00 . 10 ⁻⁵	10-01	26	1.39-10.38	В
2		470			48	1.57-10.64	А
3		470			64	1.33 - 10.58	A
4	I 0·1	470	$6.80.10^{-6}$	50.01	41	1.50-10.80	Α
5	(Na ₂ PO ₄ ,	470			50	1.31-10.65	Α
6	NaCl,	470			42	1.52-10.73	Α
7	$HClO_4$,	450			36	1.28 - 10.45	Α
8	K III)	490			40	1.40-10.59	Α
9		540			43	1.36-10.56	Α
10		550			54	1.36-10.37	Α
11		560			18	1.40-10.21	А
12	HClO ₄	400-640	$1.05 \cdot 10^{-5}$	50 ∙00	16	-1.52 to $+0.95$	В

 H_3L form. However, a single sharp isosbestic point appears with SNAZOXS, indicating that dissociation of the two hydrogens could occur simultaneously.

In a pH region of 1-3, a red-purple species, H_2L^- , exists, with an absorption maximum at 534 nm for SNAZOXS and at 516 nm for Naphthylazoxine 6 S. The red HL^{2-} form with an absorption maximum 513 nm and 500 nm for SNAZOXS and Naphthylazoxine 6S, respectively, predominates at pH 4-7. Finally, aqueous solutions are orange at pH > 7.8 due to the presence of the L^{3-} form with an absorption maximum at 500 nm for SNAZOXS and 492 nm for Naphthylazoxine 6S.

Table II surveys the combined pH-photometric titrations of the two azoxines. The data for evaluation of the dissociation constants were obtained using procedure (A). The measurement of the whole spectral curves employing procedure (B) was carried out in order to determine the curves of the molar absorption coefficients as functions of the wavelength for individual variously protonated forms. The measurement in the Hammett region was performable only using procedure (B).

The optical data given in Table I were determined from the absorbance curves of the two indicators measured at various pH values, depicted in Figs 1-4. The absorbance matrices for these spectra were evaluated employing the FA 608 +

FIG. 1

Absorption Spectra of SNAZOXS in Aqueous Solution

 $c_{\rm L} = 8.0 \cdot 10^{-5}$ M; *I* 0.10 (NaClO₄ + + Na₃PO₄ + KIII); *t* 25.0°C; *d* 10.01 mm; pH adjusted with HClO₄. Curves for pH: 1 1.84; 2 2.15; 3 2.46; 4 2.79; 5 3.07; 6 3.40; 7 3.94; 8 5.65; 9 6.50; 10 6.75; 11 7.03; 12 7.50; 13 8.01; 14 10.58.

Absorption Spectra of SNAZOXS in Concentrated Perchloric Acid Medium

 $c_{\rm L} = 2.0 \cdot 10^{-5}$ M; $t \ 25.0^{\circ}$ C; $d \ 50.00$ mm. Curves for concentrations of HClO₄ (M): 1 0.1; 2 0.3; 3 0.5; 4 1.0; 5 2.0; 63.5; 7 6.5; 8 9.0. + EY 608 program; the protonation constants thus determined are given in Table III and the dependences of the molar absorption coefficients on the wavelength in Figs 5 and 6.

Kankare's program FA 608 + EY 608 was employed for testing whether dissociation of the H_4L^+ for to H_3L and finally to H_2L^- takes place in a single step or in two steps. The sum of the least squares of the deviations between the calculated and measured absorbance values for Naphthylazoxine 6S amounted to U = 5.69. $.10^{-3}$ for chemical model $H_4L^+ \rightarrow H_3L \rightarrow H_2L^-$ involving stepwise equilibrium and $U = 7.62 \cdot 10^{-1}$ for dissociation of the two protons in a single step. The fit of the computed spectra to the experimental points was also much better when stepwise equilibrium was assumed. The standard deviations of the absorbance computed for the individual solutions in the given wavelength interval are given in Fig. 7.

In Table IV, the results of non-linear regression of the A vs pH curves are compared for measurement by the titration inside (procedure (A)) or outside (procedure (B)) the cuvette. The absorbance differences, $\Delta A = 10^3 (A_{exp} - A_{calc})$, are a criterion of the reliability of the determined parameters, obtained by non-linear regression

Absorption Spectra of Naphthylazoxine 6S in Aqueous Solution

 $c_{\rm L} = 4.0 \cdot 10^{-5}$ m; *I* 0.10 (NaClO₄ + Na₃PO₄ + KIII); *t* 25.0°C; *d* 10.01 mm; pH adjusted with HClO₄. Curves for pH: 1 1.84; 2 2.48; 3 3.02; 4 3.48; 5 4.11; 6 5.37; 7 6.78; 8 7.26; 9 7.76; 10 10.38.

Absorption Spectra of Naphthylazoxine 6S in Concentrated Perchloric Acid Medium $c_{\rm L} = 1.05 \cdot 10^{-5}$ m; $t 25.0^{\circ}$ C; d 50.00 mm. Curves for concentrations of HClO₄ (M); 1 0.03; 2 0.1; 3 0.3; 4 0.7; 5 1.5; 6 2.5; 7 4.5; 8 6.5; 9 9.0. of the A vs pH curve using the JDC-LETAG program. The technique of combined A-pH titration directly in the cuvette at a constant wavelength (procedure (A)) is faster and experimentally simpler. Titration outside the cuvette (procedure (B)) served rather for obtaining the molar absorption coefficients as a function of the wavelength while titration in the cuvette (procedure (A)) was used for obtaining reliable and precise dissociation constant values. In strongly acid solutions, only procedure (B) could be used.

The A vs pH curves of the two indicators measured by procedure (A) directly in the cuvette are given in Figs 8 and 9. In Tables V and VI, the dissociation constants are given together with the values of function U and the standard deviations of the absorbance, $\sigma(A)$, calculated from this function. The values obtained from the graphical evaluation are in good agreement with those determined by non-linear regression. The fit of the computed regression A-pH curves to the experimental points is depicted in Fig. 10.

Tables VII and VIII summarize the molar absorption coefficient values for the H_2L^- , HL^{2-} and L^{3-} forms of the two indicators, evaluated by various graphical and numerical techniques and measured by two experimental procedures. The values read directly from the graph and obtained by graphical extrapolation of the linear

TABLE III

Survey of the Results of Matrix Treatment of the Spectra from Figs 1-4 for SNAZOXS and Naphthylazoxine 6 S and for Various pH Values Using the FA 608 + EY 608 Program (ref.²⁰)

1.	SNAZ	ZOXS	Naphthylaz	oxine 6S
Item	$ \begin{array}{c} H_4L^+ \rightarrow H_3L \rightarrow \\ \rightarrow H_2L^- \end{array} $	$ \begin{array}{c} H_2 L^- \rightarrow \\ \rightarrow H L^{-2} \rightarrow \\ \rightarrow L^{-3} \end{array} $	$\begin{array}{c} H_4L^+ \rightarrow H_3L \rightarrow \\ \rightarrow H_2L^- \end{array}$	$ \begin{array}{c} H_2 L^- \rightarrow \\ \rightarrow H L^{-2} \rightarrow \\ \rightarrow L^{-3} \end{array} $
The data set	10th	lst	12th	1st
No of solutions	13	24	16	26
No of wavelengths	25	25	25	25
No of degrees of freedom	275	550	308	600
No of coloured species	3	3	3	3
Residual error of the				
absorbance (s_k)	0.0032	0.0040	0.0025	0.0031
p <i>K</i> _{a4}		6.954 ± 0.012		7.377 ± 0.021
pK _{a3}		2.912 ± 0.007		3.162 ± 0.011
$p(K_{a2})_c$	0.082 ± 0.001	_	0.295 ± 0.148	
$p(K_{a1})_c$	-1.371 ± 0.000		-0.958 ± 0.102	-
U	$4.95.10^{-3}$	$5.83.10^{-3}$	$5.69.10^{-3}$	$7.44.10^{-3}$
$\sigma(A)$	0.0035	0.0043	0.0021	0.0068

Molar Absorption Coefficients of Variously Protonated Forms of SNAZOXS as a Function of the Wavelength

 $c_{\rm L} = 1.00$ m; d 10.00 mm. Curves of individual forms: 1 L³⁻; 2 HL²⁻; 3 H₂L⁻; 4 H₃L; 5 H₄L⁺

Fig. 6

Molar Absorption Coefficients of Variously Protonated Forms of Naphthylazoxine 6S as a Function of the Wavelength

 $c_{\rm L} = 1.00$ mm, d = 10.00 mm. Curves for individual forms: 1 ${\rm L}^{3-}$; 2 ${\rm HL}^{2-}$; 3 ${\rm H}_2{\rm L}^-$; 4 ${\rm H}_3{\rm L}$; 5 ${\rm H}_4{\rm L}^+$.

Fig. 7

Fit of the Computed Regression Spectral Curves to the Experimental Points, Evaluated by the FA 608 + EY 608 Program

SNAZOXS: $\sigma(A)$ values for individual solutions (Open circles), resultant standard deviation for all solutions $\overline{\delta}(A)$ (dashed line (a)), residual absorbance error s_k (dashed line (b)) Naphthylazoxine 6 S: $\sigma(A)$ values for individual solutions (full circles), resultant standard deviation $\overline{\delta}(A)$ (solid line (a)), residual absorbance error s_k (solid line (b)). A: Concentrated HClO₄ medium, spectra evaluated from Figs 1 and 3.

		Meloun, Panel:
ΔA	ονd04 ω ν	
¥	0.799 0.759 0.658 0.601 0.559 0.559	°.
Hd	3.400 3.310 3.070 2.460 1.840 1.840	d B n, 10.1, 25 0.018 0.022 59 37 25 0 ⁻ 4
$\nabla \mathcal{H}$		Metho 7.470 nr 24.0 nr 24.0 ± 6.948 ± 6.948 ± 6.290 ± 6.290 ± 4.40 · 1 0.005
V	$\begin{array}{c} 1\cdot 205\\ 1\cdot 208\\ 1\cdot 208\\ 1\cdot 200\\ 1\cdot 200\\ 1\cdot 173\\ 0\cdot 095\\ 0\cdot 958\\ 0\cdot 991\\ 0\cdot 804\\ 0\cdot 804\\ 0\cdot 804\end{array}$	lst sett
Hd	$\begin{array}{c} 10.580\\ 9.960\\ 9.500\\ 8.460\\ 8.460\\ 7.750\\ 7.750\\ 6.750\\ 6.750\\ 6.640\\ 6.640\\ 5.650\\ 3.940\\ 3.600\\ \end{array}$	
$\nabla \mathcal{A}$		
¥	$\begin{array}{c} 0.454\\ 0.454\\ 0.449\\ 0.440\\ 0.440\\ 0.435\\ 0.435\\ 0.403\\ 0.403\\ 0.403\\ 0.403\\ 0.403\\ 0.403\\ 0.403\\ 0.403\\ 0.403\\ 0.403\\ 0.403\\ 0.236\\ 0.325\\ 0.337\\ 0.325\\ 0.337\\ 0.236\\ 0.$	°.
Hq	3.778 3.607 3.607 3.607 3.519 3.519 3.519 3.519 3.519 3.519 3.519 3.519 2.574 2.574 1.613 1.533 1.553	d <i>A</i> n, <i>I</i> 0-1, 2, 0-013 0-013 31 24 24 24 31 0-4
∇A		Metho Metho 59 6-985 土 6-985 土 6 380 土 6 380 土 10 770 土 14 690 土 14 690 土 14 690 土 0-00
Y	$\begin{array}{c} 0.563\\ 0.556\\ 0.556\\ 0.556\\ 0.545\\ 0.533\\ 0.515\\ 0.533\\ 0.515\\ 0.533\\ 0.546\\ 0.515\\ 0.533\\ 0.546\\ 0.473\\ 0.473\\ 0.458\\ 0.459\\ 0.458\\ 0.$	3rd set:
Ηd	6-950 6-885 6-888 6-751 6-712 6-712 6-497 6-497 6-497 6-497 6-497 6-497 6-497 6-497 6-497 6-497 6-497 6-497 6-497 6-497 6-497 6-335 8-35 8-35 8-35 8-35 8-35 8-35 8-35	
$\nabla \mathcal{A}$	0000-0-0440400-0	
₹	$\begin{array}{c} 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.633\\ 0.633\\ 0.633\\ 0.633\\ 0.633\\ 0.633\\ 0.633\\ 0.633\\ 0.633\\ 0.633\\ 0.633\\ 0.633\\ 0.633\\ 0.633\\ 0.633\\ 0.633\\ 0.633\\ 0.633\\ 0.633\\ 0.573\\ 0.572\\ 0.572\\ 0.572\\ 0.572\\ 0.572\\ 0.572\\ 0.572\\ 0.572\\ 0.572\\ 0.572\\ 0.572\\ 0.572\\ 0.572\\ 0.572\\ 0.572\\ 0.572\\ 0.572\\ 0.572\\ 0.572\\ 0.552\\ 0.$	
Hd	11.223 9.515 9.515 8.358 8.358 8.390 8.045 7.924 7.924 7.928 7.928 7.923 7.533 7.533 7.195 7.195 7.195	A D C S

Collection Czechoslov. Chem. Commun. [Vol. 41] [1976]

Absorbance-pH Curves for SNAZOXS Solutions for Various Wavelengths, Measured by Procedure (A)

 $c_{\rm L} = 8.6 \cdot 10^{-6}$ M; $I \cdot 0.10$ (Na₃PO₄, NaCl, KIII), $t \cdot 25 \cdot 0^{\circ}$ C; $d \cdot 50 \cdot 01$ mm; pH adjusted with HClO₄. Curves for wavelength in nm: 1 470; 2 450; 3 560; 4 580.

Absorbance-pH Curves for Naphthylazoxine 6S Solutions for Various Wavelengths, Measured by Procedure (A)

 $c_{\rm L} = 6.8 \cdot 10^{-6}$ M; *I* 0.10 (Na₃PO₄, NaCl, KIII); *t* 25.0°C; *d* 50.01 mm; pH adjusted with HClO₄). Curves for wavelength in nm: 1 490; 2 470; 3 450; 4 540; 5 550; 6 560.

FIG. 10

Fit of the Calculated A vs pH Regression Curves to the Experimental Points for Various Wavelengths in nm

SNAZOXS: $a \bullet 470$; $\circ 450$; $b \bullet 580$; $\circ 560$; Naphthylazoxine 6S: $c \bullet 470$; $\circ 450$; $d \bullet 540$; $\circ 490$; $e \bullet 560$; $\circ 550$.

TABLE V

SNAZOXS Dissociation Constants Evaluated by the Graphical Method and by Non-Linear Regression of the A us pH Curves Using the

2378

Set	7	Grap metl	hical hod	No of degrees of		Ũſ	C-LETAG	
		pK _{a3}	pK_{a4}	freedom	U	σ(A)	pK_{a3}	pK_{a4}
	440	3-24 ^a	6.93	19	$2.06 \cdot 10^{-4}$	0-003	$3\cdot 200^a \pm 0.045$	6.932 ± 0.023
	450	3.06	6.93	19	$2.32.10^{-4}$	0.005	3.069 ± 0.031	6.951 ± 0.016
	470	2.95	6.97	- 19	$4.40.10^{-4}$	0-005	2.934 ± 0.022	6.948 ± 0.018
1	500	2.84	7-02	19	$3.91.10^{-4}$	0.004	2.852 ± 0.016	7.010 ± 0.027
	550	3.64 ^a	7·01	19	$3.25.10^{-4}$	0.006	3.074 ± 0.149	7.011 ± 0.024
	560	3.16	7.00	61	$5.85.10^{-4}$	0.005	3.056 ± 0.063	$\textbf{6.997}\pm\textbf{0.029}$
	570	3.06	6.97	61	$4.72.10^{-4}$	0.005	2.998 ± 0.027	6.960 ± 0.034
	580	2-96	6.87		$4.58 \cdot 10^{-4}$	0-003	2.959 ± 0.019	6.930 ± 0.070
Ave	rage	3.00	96.9		4		$2\cdot 992 \pm 0\cdot 047$	$6\cdot967\pm0\cdot0.30$
5	470	2.90	66-9	40	8.19 . 10 ⁻⁵	0-001	$2\cdot 880 \pm 0\cdot 007$	6.986 ± 0.008
ŝ	470	2.89	7.06	54	$3.77.10^{-4}$	0.003	$2\cdot880\pm0.013$	6.985 ± 0.013
4	470	3-00	7.06	36	$1.20.10^{-4}$	0-002	$2\cdot 877 \pm 0\cdot 011$	7.075 ± 0.010
5	470	2-89	7.08	40	$5.47.10^{-4}$	0.004	3.006 ± 0.019	6.986 ± 0.020
9	470	2-92	7-03	49	$5.34.10^{-4}$	0.003	$2\cdot 864 \pm 0\cdot 016$	7.025 ± 0.015
7	450	2-89	7-03	41	$1.13.10^{-4}$	0.002	2.845 ± 0.014	$\textbf{6-982}\pm\textbf{0-009}$
8	560	2-83	7.03	38	9.72.10 ⁻⁵	0.002	2.811 ± 0.007	$7 \cdot 015 \pm 0 \cdot 011$
6	580	2.88	7.17 ^a	32	$1.38.10^{-4}$	0-002	2.859 ± 0.006	6.973 ± 0.086
And	1000	00.0	7.04				2.878 ± 0.012	7.003 + 0.022
1017	ande	214					770 7 0/0 7	$\tau \tau \sim \tau \sim \tau c \sim \tau$

Meloun, Pancl:

^a Extraneous value which was not included in the calculation of the average value.

TABLE VI				
Naphthylazoxi the JCD-LET/	ine 6S Diss AG Progra	sociation C m; Compa	constants l rison of T	Evaluated by the echniques A and
20	~	Grap	hical hod	No of degrees of
100		pK_{a3}	pK_{a4}	freedom
	430	2.97	7-44	20
	450	3.10	7-35	20
	470	3.15	7.35	20
	490	3-10	7.33	20
	540	3.03	7-48	20
	550	3-00	7-43	20
	560	3.09	7-33	20
	570	3.16	7-40	20
	0.000	00.0	00.2	

ł	~	Grap	bhical hod	No of degrees of		Ωſ	C-LETAG	
Set	Eu	pK _{a3}	pK_{a4}	freedom	U	σ(A)	pK _{a3}	pK _{a4}
	430	2.97	7-44	20	7.70 . 10 ⁻⁵	0.002	2.917 ± 0.042	7.390 ± 0.020
	450	3.10	7-35	20	$9.34.10^{-5}$	0.002	3.070 ± 0.017	7.346 ± 0.015
	470	3.15	7-35	20	$3.27.10^{-4}$	0.004	3.116 ± 0.022	7.309 ± 0.027
	490	3-10	7.33	20	$1.75.10^{-4}$	0.003	3.084 ± 0.014	7.249 ± 0.027
_	540	3.03	7-48	20	$1.05 . 10^{-3}$	0.007	$1\cdot 822^a\pm 0\cdot 413$	7.502 ± 0.036
	550	3.00	7-43	20	$2.77.10^{-4}$	0.004	2.955 ± 0.035	7.404 ± 0.022
	560	3.09	7.33	20	$1.83.10^{-4}$	0-003	3.105 ± 0.014	7.303 ± 0.031
	570	3.16	7.40	20	$1.92.10^{-4}$	0-003	$3\cdot140\pm0\cdot013$	$7\cdot 185 \pm 0\cdot 078$
Aver	age.	3.08	7-39				3·055 ± 0·022	7.336 ± 0.032
7	470	3.11	7.26	44	$1.58.10^{-4}$	0-002	3.101 ± 0.010	7.203 ± 0.011
ŝ	470	3.10	7-24	59	$1.76.10^{-4}$	0-002	3.108 ± 0.007	7.228 ± 0.009
4	470	3-04	7-26	36	$7.37.10^{-4}$	0-005	3.012 ± 0.026	7.204 ± 0.030
5	470	3·09	7-27	45	$2.54.10^{-4}$	0-002	3.096 ± 0.011	7.226 ± 0.012
9	470	3.09	7-28	37	$6.48 . 10^{-4}$	0.004	3.078 ± 0.022	7.179 ± 0.024
7	450	3·02	7-27	31	$2.73.10^{-4}$	0.003	3.099 ± 0.020	7.199 ± 0.024
8	490	3.02	7.39	35	$2.89.10^{-4}$	0-003	$3\cdot 006 \pm 0\cdot 013$	7.279 ± 0.030
6	540	2.68 ^a	7.39	38	$4.14.10^{-4}$	0-003	$2{\cdot}697^a\pm 0{\cdot}035$	$7.417^a \pm 0.013$
10	550	2.94	7.38	49	$4.81.10^{-4}$	0-003	2.901 ± 0.012	7.332 ± 0.015
11	560	3-00	7.49 ^a	43	$4.89.10^{-4}$	0.003	2.995 ± 0.008	$7.547^a \pm 0.043$
Aver	• <i>0ae</i>	3.05	7.30				P10.0 + PP0.2	7.531 + 0.020

Set	r	Re exper	ad from 1 imental c	the urves	0	Graphical methods		, , ,	JDC-LETAG		FA	608 + EY	608
and another statements and the		L.	TH3	^E H ₂ L	er	2HL	⁶ H ₂ L	$\epsilon_{ m L}\pm\sigma(arepsilon)$	$arepsilon_{ m HT}\pm\sigma(arepsilon)$	$\mathfrak{e}_{\mathrm{H_2L}}\pm\sigma(\mathfrak{e})$	Т _г	2HL	[€] H₂L
	440	10 360	8 120	6 680	10 370	8 130	6 750	10350 ± 17	8 090 ± 27	$6\ 720 \pm 32$	10 390	8 040	6 560
	450	12 110	8 620	6 430	12 080	8 630	6 430	$12~040\pm18$	$8\ 660\pm 29$	6410 ± 38	12 100	8 610	6 280
	470	15170	10 930	6 490	15 040	10 940	6 320	$15~040\pm25$	$10\ 890\pm37$	$6\ 290\pm59$	15 060	10 900	6 270
1	500	17 050	14 300	8 490	16 970	14 310	8 150	$16~970\pm24$	$14\ 310\pm\ 33$	$8\ 170\pm 61$	16 950	14 380	8 400
	550	8 550	10 890	11 300	8 590	10 900	11 280	8550 ± 20	10950 ± 33	$11\ 380\pm 60$	8 610	11 050	11 260
	560	6810	8 930	10 800	6160	8 940	10710	$6\ 150\pm 29$	$9\ 020\pm43$	$10\ 780\pm 61$	6 120	9 100	10 800
	570	4310	6 240	9 870	4 050	6 250	9 880	$4~050\pm26$	6310 ± 38	$9 970 \pm 57$	4 080	6 380	10110
	580	2 370	3 560	8 550	2 440	3 560	8 800	2440 ± 26	3510 ± 37	$8\ 850\pm 58$	2 430	3 550	8 950
2	470	14 810	11 300	6 830	14 870	11 310	6 720	$14~850\pm15$	$11\ 190\pm 17$	$6~690\pm22$			
ŝ	470	14 750	10 880	6 540	14 690	10 850	6 400	$14~690\pm23$	$10~770\pm24$	$6\ 380\pm\ 31$			
4	470	15 000	11 060	6 370	15 000	11 120	6 270	$14\ 950\pm 41$	$11\ 010\pm40$	$6~280\pm51$			
S	470	15 000	10 690	6 940	15 110	11 310	6 430	$14~990\pm39$	$10~670\pm~28$	$6\ 190\pm46$			
9	470	15 020	10 730	6 850	14 960	10 780	6 300	$15~040\pm25$	$11\ 150\pm 25$	$6~440\pm25$			
7	450	12 020	8 380	5 460	12 000	8 390	5 470	$11~990\pm18$	$8\ 310\pm17$	5430 ± 28			
8	560	6157	9 210	13 680	6 180	9 220	13 950	$6\ 140\pm13$	$9~270\pm13$	$13\ 930\pm 20$			
6	580	2 520	3 290	10 690	2 550	3 290	10 820	2520 ± 25	$3 340 \pm 25$	$10\ 890\pm\ 25$			

	1
	ł
II	
E VI	,

Molar Absorption Coefficients for the H_2L^- , HL^2 and L^3 Forms of Naphthylazoxine 6S Evaluated by Various Graphical and Numerical Methods from the 4 n nH Curves Measured by Techniques 4 and R (The charace on the species are omitted in the table) TABI

Graphical methodsJDC-LETAGh_1 to the			3	bu cu		• 62							(210	
$\varepsilon_{\rm L}$ $\varepsilon_{\rm H,L}$ $\varepsilon_{\rm H,L} \pm \sigma(\varepsilon)$ </th <th>Read from the λ experimental curves</th> <th>Read from the experimental curves</th> <th>ad from the imental curves</th> <th>he urves</th> <th></th> <th></th> <th>Graphica nethods</th> <th>_</th> <th></th> <th>JDC-LETAG</th> <th></th> <th>FA (</th> <th>608 + EY</th> <th>608</th>	Read from the λ experimental curves	Read from the experimental curves	ad from the imental curves	he urves			Graphica nethods	_		JDC-LETAG		FA (608 + EY	608
12 620 98707797012560 \pm 289770 \pm 207950 \pm 50118208806015980188701871716000 \pm 3011755 \pm 237150 \pm 47160501182072401999015630884019200 \pm 56155520 \pm 438770 \pm 86191990015600884022540195001177022530 \pm 4019330 \pm 5311760 \pm 64194302256011960910014880149005670 \pm 5410860 \pm 33141491279310148605600141508600 \pm 141614740 \pm 54157601487030306000141503040 \pm 436030 \pm 33141416261490030306000141501416158601486015900303060001415014161414860 \pm 1616728601480011490551416141465149026141487860	11111 ε ^H 3 Γ	ε <mark>ι ^εΗΣ ^εΗ₂L</mark>	⁶ HL ⁶ H ₂ L	€H₂L	. 1	Γ	TH3	[€] H₂L	$arepsilon^{\Gamma}\pm\sigma(arepsilon)$	$arepsilon^{\mathrm{HL}}\pm\sigma(arepsilon)$	$^{\varepsilon}_{H_{2}L}\pm\sigma(arepsilon)$	Ъ	Ъ	^E H ₂ L
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	430 12 610 9 870 7 870	12 610 9 870 7 870	9 870 7 870	7 870		12 620	9 870	7 970	$12~560\pm~28$	9 770	7 950 ± 50	12 560	9 800	8 060
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	450 15 980 11 860 6 990	15 980 11 860 6 990	11 860 6 990	6 990		15 980	11 870	7 170	$16\ 000\pm 30$	$11\ 750\pm 23$	7 150 \pm 47	16 050	11 820	7 240
22 540 $19 500$ $11 770$ $22 530 \pm 40$ $19 330 \pm 32$ $11 760 \pm 64$ $19 430$ $22 660$ $11 960$ $9 100$ $14 880$ $14 960$ $9 090 \pm 10$ $14 740 \pm 54$ $15 370 \pm 27$ $9 310$ $14 860$ $15 060$ $5 660$ $10 750$ $14 900$ $5 670 \pm 54$ $10 860 \pm 38$ $14 940 \pm 91$ $5 760$ $10 770$ $14 820$ $3 030$ $6 000$ $14 150$ $3 040 \pm 43$ $6 030 \pm 33$ $14 120 \pm 66$ $3 020$ $5 910$ $14 820$ $3 030$ $6 000$ $14 170$ $15 10 \pm 42$ $2 740 \pm 35$ $11 490 \pm 65$ $1 470$ $2 640$ $11 590$ $18 970$ $14 620$ $8 450$ $18 920 \pm 19$ $14 600 \pm 15$ $8 500 \pm 27$ $2 640$ $11 590$ $19 010$ $14 620$ $8 450$ $18 920 \pm 14$ $14 650 \pm 16$ $8 420 \pm 67$ $14 70$ $2 640 \pm 11 590$ $19 010$ $14 620$ $8 450$ $19 600 \pm 15$ $8 420 \pm 67$ 2740 ± 27 $2 8 430 \pm 26$ $11 790$ $19 010$ $14 560$ $8 420$ 49 $8 420 \pm 67$ $2 8 430 \pm 26$ $3 700 \pm 37$ $19 140$ $14 560$ $8 420 \pm 21$ 480 ± 30 $3 00 \pm 37$ $19 060$ $14 560$ $8 8420 \pm 20 \pm 67$ $3 18 970 \pm 28$ $19 140$ $14 560$ $8 8430 \pm 30$ $11 630 \pm 33$ $5 300 \pm 37$ $19 140$ $14 560$ $8 8430 \pm 30$ $11 630 \pm 33$ $5 300 \pm 37$ $19 140$ $14 560$ $8 8430 \pm 26$ $8 430 \pm 51$ <tr<tr>$19 140$$14 560$$8 8430$</tr<tr>	470 19 860 15 610 8 740	19 860 15 610 8 740	15 610 8 740	8 740		19 990	15 630	8 840	$19\ 200\pm56$	$15\ 520\pm43$	$8~770\pm86$	19 990	15 600	8 840
9 100 $ 4\ 880$ $ 4\ 960$ 9 090 ± 10 $ 4\ 740 \pm 54$ $ 5\ 370 \pm 27$ 9 310 $ 4\ 860$ $ 5\ 060$ 5 660 $10\ 750$ $ 4\ 900$ $5\ 670 \pm 54$ $10\ 860 \pm 38$ $ 4\ 940 \pm 91$ $5\ 760$ $10\ 770$ $ 4\ 820$ 3 0306 000 $ 4\ 150$ $3\ 040 \pm 43$ $6\ 030 \pm 33$ $ 4\ 120 \pm 65$ $ 4\ 700$ $2\ 640$ $ 1\ 570$ $1\ 490$ $2\ 500$ $ 1\ 470$ $1\ 510 \pm 42$ $2\ 740 \pm 35$ $ 1\ 490 \pm 65$ $ 4\ 70$ $2\ 640$ $ 1\ 590$ $18\ 970$ $ 4\ 620$ $8\ 600$ $ 8\ 920 \pm 19$ $ 4\ 650 \pm 16$ $8\ 860 \pm 27$ $ 4\ 70$ $2\ 640$ $ 1\ 590$ $19\ 9010$ $ 4\ 620$ $8\ 450$ $ 1\ 4\ 650 \pm 14$ $8\ 460 \pm 16$ $ 1\ 790$ $ 1\ 590$ $19\ 010$ $ 4\ 620$ $8\ 430$ $ 1\ 8\ 460 \pm 16$ $ 1\ 590$ $ 1\ 590$ $19\ 010$ $ 4\ 620$ $8\ 430 \pm 26$ $ 4\ 70$ $2\ 640$ $ 1\ 590$ $19\ 010$ $ 4\ 620$ $8\ 430 \pm 26$ $ 4\ 70$ $2\ 640$ $ 1\ 590$ $19\ 010$ $ 4\ 620$ $8\ 430 \pm 26$ $ 4\ 70$ $2\ 640$ $ 1\ 590$ $19\ 010$ $ 4\ 620$ $8\ 430 \pm 26$ $ 4\ 70$ $2\ 640$ $ 1\ 590$ $19\ 010$ $ 4\ 600 \pm 21$ $ 4\ 600 \pm 22$ $8\ 430 \pm 26$ $ 6\ 70$ $ 7\ 70$ $19\ 70$ $ 8\ 840$ $ 6\ 71\ 70\ 84$ $ 4\ 70\ 70\ 70$ $ 6\ 70\ 70\ 70$ $19\ 700$ $ 4\ 80\ 81\ 70\ 840$ $ 6\ 70\ 84\ 70\ 840$ $ 6\ 70\ 84\ 70\ 84\ 70$ $19\ 700$ $ 8\ $	490 22 600 19 480 11 740	22 600 19 480 11 740	19 480 11 740	11 740		22 540	19 500	11 770	$22~530\pm40$	$19\;330\pm32$	$11\ 760\pm 64$	19 430	22 660	11 960
5 660 10750 14900 $5 670 \pm 54$ 10860 ± 38 14940 ± 91 $5 760$ 10770 14820 3 0306 000 14150 $3 040 \pm 43$ $6 030 \pm 33$ 14120 ± 66 $3 020$ $5 910$ 14330 1490 $2 500$ 11470 1510 ± 42 $2 740 \pm 35$ 11490 ± 65 1470 $2 640$ 11590 18970 14620 $8 600$ 18920 ± 19 14600 ± 15 $8 500 \pm 27$ 2640 11590 19010 14620 $8 450$ 18990 ± 14 14650 ± 16 $8 460 \pm 16$ 1660 ± 26 19010 14620 $8 450$ 18990 ± 14 14650 ± 16 8400 ± 16 19010 14620 $8 430$ 19000 ± 60 14560 ± 49 $8 420 \pm 67$ 19070 14560 $8 430$ 19000 ± 21 14600 ± 22 8430 ± 26 19060 14620 $8 430$ 19000 ± 21 14600 ± 22 8430 ± 36 19000 14560 $8 420$ 19100 ± 34 3830 ± 33 6300 ± 37 19060 14620 $8 420$ 11700 6700 18800 ± 30 11630 ± 33 19000 14560 $8 420 \pm 60 \pm 37$ 2830 ± 37 373 19900 18970 ± 29 118970 ± 28 12460 ± 37 22030 19010 12520 21920 ± 31 18970 ± 28 18950 15700 18840 8960 ± 35 15710 ± 29 18780 ± 51 8950 11710 18100 5940 ± 29 11210 ± 29 18700 ± 51	540 9120 14860 15730	9 1 20 14 860 15 730	14 860 15 730	15 730		9 100	14 880	14 960	$9\ 090\pm10$	$14\ 740\pm 54$	$15\ 370\pm27$	9 310	14860	15 060
3 0306 000 14150 $3 040 \pm 43$ $6 030 \pm 33$ 14120 ± 66 $3 020$ $5 910$ $14 330$ $1 490$ $2 500$ $11 470$ $1 510 \pm 42$ $2 740 \pm 35$ $11 490 \pm 65$ $1 470$ $2 640$ $11 590$ $8 970$ $14 620$ $8 600$ $18 920 \pm 19$ $14 600 \pm 15$ $8 500 \pm 27$ $2 640$ $11 590$ $9 010$ $14 620$ $8 450 \pm 14$ $14 650 \pm 14$ $8 460 \pm 16$ $2 640$ $11 590$ $9 070$ $14 620$ $8 450$ $14 1 650 \pm 14$ $8 420 \pm 67$ 670 $2 640$ $11 590$ $9 070$ $14 620$ $8 450$ $19 000 \pm 60$ $14 560 \pm 22$ $8 430 \pm 26$ 670 $19 000 \pm 21$ $14 600 \pm 22$ $8 430 \pm 26$ $9 060$ $14 620$ $8 430$ $19 000 \pm 21$ $14 600 \pm 22$ $8 430 \pm 33$ $5 300 \pm 37$ $9 140$ $14 560$ $8 420$ $19 110 \pm 54$ $14 380 \pm 42$ $8 430 \pm 56$ $9 140$ $14 560$ $8 420$ $19 110 \pm 54$ $14 380 \pm 32$ $5 300 \pm 37$ $5 920$ $11 700$ $6 700$ $5 880 \pm 30$ $11 630 \pm 33$ $6 300 \pm 37$ $5 920$ $11 10$ $18 970 \pm 28$ $12 200 \pm 37$ $8 950 \pm 51$ $8 950$ $15 700$ $18 840$ $8 960 \pm 35$ $15 710 \pm 28$ $18 780 \pm 51$ $8 950$ $11 110$ $18 100$ $5 940 \pm 29$ $11 210 \pm 29$ $18 220 \pm 41$ $5 440$ $11 110$ $18 100$ $5 940 \pm 29$ $11 7040 \pm 38$ $5 700$ $17 020$ $3 470 \pm 35$ $5 700 \pm 30$ 1	550 5 620 10 740 14 990	5 620 10 740 14 990	10 740 14 990	14 990		5 660	10 750	14 900	$5\ 670\pm\ 54$	$10~860\pm~38$	$14\ 940\pm91$	5 760	10 770	14 820
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	560 3 000 5 990 13 990	3 000 5 990 13 990	5 990 13 990	13 990		3 030	6 000	14 150	$3\ 040\pm43$	$6\ 030\pm33$	$14\ 120\pm 66$	3 020	5 910	14 330
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	570 1 500 2 500 11 740 1	1 500 2 500 11 740 1	2 500 11 740 1	11 740 1	_	490	2 500	11 470	$1\ 510\pm42$	2.740 ± 35	$11\ 490\pm 65$	1 470	2640	11 590
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	470 19 010 14 620 8 630 18	19 010 14 620 8 630 18	14 620 8 630 18	8 630 18	100	970	14 620	8 600	$18~920\pm19$	$14\;600\pm15$	$8\ 500\pm\ 27$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	470 19 040 14 620 8 600 15	19 040 14 620 8 600 15	14 620 8 600 15	8 600 15	5	010	14 620	8 450	$18\ 990\pm14$	$14\ 650\pm 14$	$8~460\pm~16$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	470 19120 14560 8510 19	19 120 14 560 8 510 19	14 560 8 510 19	8 510 19	5	070	14 560	8 590	19000 ± 60	$14\ 560\pm 49$	$8~420\pm~67$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	470 19 040 14 620 8 570 19	19 040 14 620 8 570 19	14 620 8 570 19	8 570 19	-	9 060	14 620	8 430	$19\ 000\pm21$	$14\;600\pm22$	$8\ 430\pm\ 26$			
5 92011 7006 70015 880 \pm 3011 630 \pm 336 300 \pm 372 03019 01012 52021 920 \pm 3118 970 \pm 2812 460 \pm 378 95015 70018 8408 960 \pm 3515 710 \pm 2818 780 \pm 515 94011 11018 1005 940 \pm 2911 210 \pm 2918 220 \pm 413 4605 70017 0203 470 \pm 355 670 \pm 3017 040 \pm 38	470 19120 14420 8570 1	19 120 14 420 8 570 1	14 420 8 570 1	8 570 1	-	9 140	14 560	8 420	$19\ 110 \pm 54$	$14\ 380\pm42$	$8\ 430\pm58$			
22 030 19 010 12 520 21 920 31 18 970 28 12 460 37 8 950 15 700 18 840 8 960 35 15 710 28 18 780 51 5 940 11 110 18 100 5 940 29 11 210 29 18 220 41 3 460 5 770 17 020 3 470 35 5 670 30 17 040 38	450 16 080 11 670 6 610 1	16 080 11 670 6 610 1	11 670 6 610 1	6 610 1	-	5 920	11 700	6 700	$15\ 880\pm30$	$11 \ 630 \pm 33$	$6\ 300\pm37$			
8 950 15 700 18 840 8 960 \pm 35 15 710 \pm 28 18 780 \pm 51 5 940 11 110 18 100 5 940 \pm 29 11 210 \pm 29 18 220 \pm 41 3 460 5 700 17 020 3 470 \pm 35 5 670 \pm 30 17 040 \pm 38	490 21 930 19 010 12 570	21 930 19 010 12 570	19 010 12 570	12 570		22 030	19 010	12 520	21920 ± 31	$18~970\pm~28$	$12\ 460\pm37$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	540 8 950 15 790 18 600	8 950 15 790 18 600	15 790 18 600	18 600		8 950	15 700	18840	8960 ± 35	15710 ± 28	$18\ 780\pm 51$			
$3\ 460$ $5\ 700$ $17\ 020$ $3\ 470\pm 35$ $5\ 670\pm 30$ $17\ 040\pm 38$	550 5910 11110 17980	5 910 11 110 17 980	11 110 17 980	17 980		5 940	11 110	18 100	5940 ± 29	$11\ 210\pm 29$	$18\ 220\pm41$			
	560 3 540 5 700 16 670	3 540 5 700 16 670	5 700 16 670	16 670		3 460	5 700	17 020	$3~470\pm35$	$5~670\pm~30$	$17\ 040\pm38$			

part of Eqs (2) and (3) are given. In addition, numerical non-linear regression of the A vs pH curve using the JDC-LETAG program and factor analysis of absorbance matrices were employed. Various numerical and graphical techniques and two experimental procedures yield identical results. The values obtained by the JDC-LETAG program are considered to be the more reliable.

A survey of all the determined dissociation constants and comparison with the literature data are given in Table IX. We consider the dissociation constants obtained by non-linear regression with the JDC-LETAG program and denoted by letter f in Table IX to be the final values for the individual media.

TABLE IX

Survey of Dissociation Constants of SNAZOXS and Naphthylazoxine 6S

· · · · ·		-lc	$\log K^a$
Equilibrium	Medium	SNAZOXS	Naphthylazoxine 6 S
L^{-3}/HL^{-2}	I 0 1, 25°C (Na ₃ PO ₄ , NaClO ₄ , K III, HClO ₄)	$\begin{array}{l} 6.96^{c,e} \\ 6.967 \pm \ 0.030^{c,f} \\ 6.954 \pm \ 0.012^{d,g} \end{array}$	$7\cdot 39^{c.e}$ $7\cdot 336 \pm 0\cdot 032^{c,f}$ $7\cdot 377 \pm 0\cdot 021^{d.g}$
	I 0·1, 25°C (Na₃PO₄, NaCl, K III, HClO₄)	$7.04^{b,e}$ $7.003 \pm 0.022^{b,f}$	$7.30^{b.e}$ $7.231 \pm 0.020^{b.f}$
	<i>I</i> 0·1, 25°C	$7 \cdot 0^h$	$7 \cdot 4^h$
HL^{-2}/H_2L^{-1}	<i>I</i> 0 1, 25°C (Na ₃ PO ₄ , NaClO ₄ , K III, HClO ₄)	$3.00^{c,e} 2,992 \pm 0.047^{c,f} 2.912 \pm 0.007^{d,g} $	$\frac{3 \cdot 08^{c,c}}{3 \cdot 055 \pm 0 \cdot 022^{c,f}} \\ 3 \cdot 162 \pm 0 \cdot 011^{d,g}$
	I 0·1, 25°C (Na ₃ PO ₄ , NaCl,	$\frac{2 \cdot 90^{b,e}}{2 \cdot 878 \pm 0 \cdot 12^{b.f}}$	$3.05^{b,e}$ $3.044 \pm 0.014^{b.f}$
	K III, HClO ₄) I 0·1, 25°C	3·0 ^{<i>h</i>}	3·1 ^h
H ₂ L ⁻ /H ₃ L	HClO ₄ , 25°C	$0.082 \pm 0.001^{d,g}$	$0.295 \pm 0.148^{d,g}$
H ₃ L/H ₄ L ⁺	HClO ₄ , 25°C	$-1.371 \pm 0.000^{d.g}$	$-0.958 \pm 0.102^{d,g}$

^{*a*} Average taken from selected values (Tables VII, VIII); ^{*b*} from A vs pH curves measured by technique (*A*); ^{*c*} from A vs pH curves measured by technique (*B*); ^{*d*} from pH-absorbance spectra measured by technique (*B*); ^{*e*} evaluated graphically; ^{*f*} evaluated by non-linear regression using the JDC-LETAG program; ^{*g*} evaluated by matrix analysis of the spectra using the FA 608 + + EY 608 program; ^{*h*} literature data, see ref.¹⁶.

Reactions of SNAZOXS and Naphthylazoxine 6S with Various Metal Cations

The two azoxines S are often used in analytical practice as metallochromic indicators, as they form complexes with many metals which are mostly yellow coloured. In Table X is given a survey of their colour reactions with a number of metal cations. In our laboratory, complexation equilibria of the two azoxines S with many metals

TABLE X

Survey of Colour Reactions of SNAZOXS and Naphthylazoxine 6S with Various Metal Cations

Cation	Metal : indicator concentration ratio	SNAZOXSNaphthylazoxine 6S $c = 1.6 \cdot 10^{-4}$ m; $c = 1.4 \cdot 10^{-4}$ m;pH 5.3 (red solution)pH 5.3 (red solution)
$Pb^{2+} Cu^{2+} Ni^{2+} Co^{2+} Zn^{2+} Al^{3+} Sc^{3+} Zr^{4+}$	10:1	yellow solution
Sn^{2+} Ce ⁴⁺	2:1	solution remains yellow at $pH < 1.3$
Ag^+ Th ⁺ La ³⁺	10:1	orange solution
Cr ³⁺	10:1	no perceptible colour change on addition of the metal; colouration slowly changes from red to yellow
Hg_2^{2+}	10:1	red-orange solution blackens due to reduced Hg
Hg^{2} +	2:1	orange solution; at higher metal-to-indicator ratios the solution becomes turbid
Bi ^{3 +}	2:1	orange solution becomes turbid at higher excesses due to hydrolysis of excess Bi
Fe ³⁺	10:1	yellow-brown solution turbid due to the presence of $Fe(OH)_3$ precipitate
Mn ²⁺	10:1	orange solution slowly becomes turbid due to the presence of a brown precipitate
Ca ^{2 +}	10:1	no colour change slow formation of a red precipitate
Sr^{2+}	10:1	red precipitate slowly formed
Ba ²⁺	10:1	purple solution; red precipitate purple precipitate formed slowly formed slowly

2384

have been studied. The results will be published in the following communications in this series.

We would like to express our gratitude to Dr S. Kotrlý for discussion of the manuscript. We would also like to thank Dr J. Čermák and Dr J. Caha for their assistance in modification and realization of the FA 608 and EY 608 programs on the EC 1040 computer (Robotron). The computations were carried out on the ODRA 1013 computer (8 kwords) using the JDC-LETAG program, at the Computing Centre, Institute of Chemical Technology, Pardubice, using the JDC-LETAG program on the Hewlett Packard 2116 (16k) computer with a WANG output graphical teleprinter, at the Research Institute of Industrial Chemistry, Pardubice - Semtín, and finally using the FA 608 + EY 608 program on the EC 1040 computer (500k), at the Computing Centre, General Management, UNICHEM company, Pardubice. We give our thanks to the operators and other employees in these computing centres.

REFERENCES

- 1. Fritz J. S., Lane W. J., Bystroff A. S.: Anal. Chem. 29, 821 (1957).
- 2. Busev A. I., Talipova L. L.: Zh. Anal. Khim. 17, 447 (1962).
- 3. Guerrin G., Sheldon M. V., Reilley C. N.: Chemist Analyst 49, 36 (1960).
- 4. Fritz J. S., Abbink J. E., Payne M. A.: Anal. Chem. 33, 1381 (1961).
- 5. Busev A. I., Talipova L. L.: Vestn. Mosk. Univ., Khim. 2, 63 (1962).
- 6. Busev A. I., Skrebkova L. M., Talipova L. L.: Zh. Anal. Khim. 17, 831 (1962).
- 7. Goyal S. S., Tandon J. P.: Talanta 14, 1449 (1967).
- 8. Goyal S. S., Tandon J. P.: Talanta 16, 106 (1969).
- 9. Tsuneo Shimizu: Bunseki Kagaku 16, 233 (1967).
- 10. Ingri N., Lagerström G., Frydman M., Sillén L. G.: Acta Chem. Scand. 11, 1034 (1957).
- 11. Püschel R., Stefanec Z.: Mikrochim. Acta 1962, 1108.
- 12. Püschel R.: Talanta 10, 1125 (1963).
- 13. Vytřas K.: Thesis. Institute of Chemical Technology, Pardubice 1971.
- 14. Vytřas K., Vytřasová J., Kotrlý S.: Talanta 22, 529 (1975).
- 15. Meloun M., Čermák J.: Talanta 23, 15 (1976).
- 16. Meites L.: Handbook of Analytical Chemistry, p. 105, 108 McGraw-Hill, New York 1963.
- 17. Meloun M.: Thesis. Institute of Chemical Technology, Pardubice 1973.
- 18. Meloun M., Čermák J.: Sb. Věd. Pr. Vys. Šk. Chemickotechnol., Pardubice 30, 49 (1973).
- 19. Meloun M., Čermák J., Kotrlý S.: Talanta, in press.
- 20. Kankare J.: Anal. Chem. 42, 1322 (1970).
- Tomíček I.: Quantitative Analysis, p. 144. Published by Státní zdravotnické nakladatelství, Prague 1954.
- Holzbecher Z., Jeník J., Šůcha L., Vláčil F., Vrbský J.: Analytical Chemistry, p. 299. Published by SNTL, Prague 1968.
- 23. Biedermann G.: Ark. Kemi 9, 277 (1955).
- 24. Bates R. G.: Determination of pH. Wiley, New York 1964.
- Říha V., Kotrlý S., Meloun M.: Improvement Suggestion, Institute of Chemical Technology, Pardubice, No 9/74 (1974).
- 26. Říha V., Meloun M.: Chem. Listy 68, 1289 (1974).
- 27. Říha V., Meloun M.: Czech. 149 408 (1972).
- 28. Říha V., Meloun M.: Ger. (GDR) 99008 (1972).
- 29. Havel J.: Chem. Listy 62, 1250 (1968).

Dissociation Constants of SNAZOXS and Naphthylazoxine 6S

- 30. Kubáň V., Sommer L., Havel J.: This Journal 40, 604 (1975).
- 31. Forsling W., Hietanen S., Sillén L. G.: Acta Chem, Scand. 6, 901 (1952).
- 32. Brown A. S.: J. Amer. Chem. Soc. 56, 56 (1934).
- 33. Sommer L., Kučerová J., Procházková H., Hniličková M.: Publ. Fac. Sci. Univ. Brno 1965, No 464, 249.
- 34. Sommer L., Kubáň V., Havel J.: Folia Fac. Sci. Nat. Univ. Purkynianeae Brunensis 11, (Chemia 7) Part 1 (1970).
- 35. Wernimont G.: Anal. Chem. 39, 554 (1967).

Translated by M. Štulíková,